\(\left.\begin{array}{|c|}\hline PAM1014 \\
Introduction to Radiation \\

Physics\end{array}\right\}\)| "Numbers, Physical Quantities, |
| :---: |
| and Units" |

Objectives

- Introduce
- Numbers
- Physical quantities
- Symbols
- Units

Numbers

- Can be...
- Real
e.g. 1, 0.01, 1.5, -12
- Imaginary
e.g. $3 i,-2 i($ where $i=\sqrt{ }-1)$
- Complex
e.g. $1+2 i,-12+4 i$
- Integer
e.g. $100,9,-87$
- Positive
e.g. $1,4,123$
- Negative
e.g. $-12,-1,-0.001$

Numbers

- Rounding to nearest decimal place:
- $\pi=3.14159265358979$
- ONE decimal place: $\quad \pi=3.1$
- THREE decimal place: $\pi=3.142$
- SIX decimal place: $\quad \pi=3.141593$
- Etc
- If the next decimal value is equal or greater than 5 , round up
- Else, round down!

Numbers

- Decimal places:
- ONE decimal place: 0.1
- TWO decimal place: 0.01
- THREE decimal place: 0.001
- etc

Examples

- 100.13567
- 1.9957342
- 12.1368

Numbers

- Rounding to significant figures:
- $\pi=3.14159265358979$
- ONE significant figure: $\quad \pi=3$
- THREE significant figure: $\pi=3.1$
- SIX significant figure : $\quad \pi=3.14159$
- Etc
- If the next decimal value is equal or greater than 5 , round up
- Else, round down!

Examples

- 100.13567
- 1.9957342
- 12.1368

Numbers

- Big \& small numbers
- 1 million: 1,000,000
- 1 billion: 1,000,000,000,000
- 1 millionth: 0.000001
- 1 billionth: 0.000000000001

Physical Quantities

- Numbers are used to describe experimental results

Fundamental Quantities (Operational Definitions)

- Only defined by measurement
- Other physical quantities can be describe by the way they are calculated from measurements

Derived Quantities

- Calculated quantities

Numbers

- Big \& small numbers
- 1 million: $1,000,000=10^{6}$
- 1 billion: $1,000,000,000,000=10^{12}$
- 1 millionth: $0.000001=10^{-6}$
- 1 billionth: $0.000000000001=10^{-12}$

[^0]
Physical Quantities

Example

- Use a ruler to measure distance [m]
- Use stop watch to measure time [s]
- Acceleration
- Acceleration $=$ speed $/$ time $\left[\mathrm{ms}^{-2}\right]$

Physical Quantities

Units

- To make precise measurements, we need units of measure that...
- Do not change
- Can be duplicated

Physical Quantities

- When measuring quantity, we always compare it to a reference standard
- Example: If we say someone is 1.8 m tall, we mean that they are 1.8 times as tall as a metre stick - which we define as 1 m long
- Such a standard defines a unit

Physical Quantities

SI Units

Système International (International System)

- Time - seconds [s]
- Atomic Clock
- Length - metres [m]
- Atomic: Wavelength of light emitted by ${ }^{86} \mathrm{Kr}$
- Mass - kilograms [kg]
- Mass of a cylinder of platinum-irradium alloy

Physical Quantities

- Force

$$
\text { Force }=\text { mass } \times \text { acceleration }
$$

$$
F=m a
$$

- SI Units: Newtons [N]
- 1 Newton $=1 \mathrm{Kg} \mathrm{ms}^{-2}$
- Physical quantity or Operational definition?

Physical Quantities

- Work and Energy

$$
\begin{aligned}
\text { Work } & =\text { Force } \times \text { distance } \\
W & =F d
\end{aligned}
$$

- SI Units: joule [J]
- 1 joule $=1 \mathrm{Nm}$
- Physical quantity or Operational definition?

Physical Quantities

Prefixes

- Larger \& smaller units for the same PQ
- Metric system
- Always multiples of 10 or $1 / 10^{\text {th }}$

Physical Quantities

Prefixes

- Time
- SI unit: second

1 femtosecond	1 fs	$10^{-15} \mathrm{~s}$
1 picosecond	1 ps	$10^{-12} \mathrm{~s}$
1 nanosecond	1 ns	$10^{-9} \mathrm{~s}$
1 microsecond	$1 \mu \mathrm{~s}$	$10^{-6} \mathrm{~s}$
1 millisecond	1 ms	$10^{-3} \mathrm{~s}$
1 second	1 s	1 s

Unit Conversion

- When calculating derived quantities from fundamental quantities correct units MUST be used
- Symbols represent physical quantities including units which must be substituted in a consistent manner

Physical Quantities

Prefixes

- Length
- SI unit: metre

1 nanometre	1 nm	$10^{-9} \mathrm{~m}$	Size of a few atoms
1 micrometre	$1 \mu \mathrm{~m}$	$10^{-6} \mathrm{~m}$	Size of a cells
1 millimetre	1 mm	$10^{-3} \mathrm{~m}$	Size of a pen tip
1 centimetre	1 cm	$10^{-2} \mathrm{~m}$	
1 metre	1 m	$10^{0} \mathrm{~m}$	
1 kilometre	1 km	$10^{3} \mathrm{~m}$	Ten min walk

Physical Quantities

Prefixes

- Mass
- SI unit: kilogram

1 microgram	$1 \mu \mathrm{~g}$	$10^{-9} \mathrm{~kg}$	Mass of a dust particle
1 milligram	1 mg	$10^{-6} \mathrm{~kg}$	Mass of a grain of salt
1 gram	1 g	$10^{-3} \mathrm{~kg}$	Mass of a paper clip
1 kilogram	1 kg	1 kg	Mass a of a bag of flour

Unit Conversion

Example:

- Calculating the volume of a cube from the length of it's sides
- Measure side to be 1 cm
- Volume in cubic metres [m^{3}]

$$
\begin{aligned}
\text { volume } & =(\text { length })^{3}=(1[\mathrm{~cm}])^{3}=\left(1[\mathrm{~cm}] \times 0.01\left[\mathrm{~m} \mathrm{~cm}^{-1}\right]\right)^{3} \\
& =0.01 \mathrm{~m}^{3}
\end{aligned}
$$

Summary

- Numbers
- Physical quantities
- Symbols
- Units

Background Reading

- FLAP Module M 1.2

[^0]: Physical Quantities
 Example

 - Use a ruler to measure distance [m]
 - Use stop watch to measure time [s]
 - Speed
 - Speed $=$ distance $/$ time $\left[\mathrm{ms}^{-1}\right]$

