PAM1014 Introduction to Radiation Physics

"Numbers, Physical Quantities, and Units"

Objectives

- Introduce
 - -Numbers
 - Physical quantities
 - Symbols
 - -Units

Numbers

- Can be...
 - Real e.g. 1, 0.01, 1.5, -12
 - Imaginary e.g. 3i, -2i (where i = √-1)
 - Complex e.g. 1+2i, -12+4i
 - Integer e.g. 100, 9, -87
 - Positive e.g. 1, 4, 123
 - Negative e.g. -12, -1, -0.001

Numbers

- Decimal places:
 - ONE decimal place: 0.1
 - TWO decimal place: 0.01
 - THREE decimal place: 0.001
 - etc

Numbers

• Rounding to nearest decimal place:

- π = 3.14159265358979

- ONE decimal place: $\pi = 3.1$
- THREE decimal place: $\pi = 3.142$
- SIX decimal place: $\pi = 3.141593$
- Etc
- If the next decimal value is equal or greater than 5, round up
- Else, round down!

Examples

- 100.13567
- 1.9957342
- 12.1368

Examples

- 100.13567
- 1.9957342
- · 12.1368

Numbers

- Big & small numbers
- 1 million: 1,000,000
- 1 billion: 1,000,000,000,000
- 1 millionth: 0.000001
- 1 billionth: 0.00000000001

Numbers

- Big & small numbers
- 1 million: 1,000,000 = 10⁶
- 1 billion: 1,000,000,000,000 = 10¹²
- 1 millionth: 0.000001 = 10⁻⁶
- 1 billionth: 0.00000000001 = 10⁻¹²

Physical Quantities

Numbers are used to describe experimental results

Fundamental Quantities (Operational Definitions)

- Only defined by measurement
- Other physical quantities can be describe by the way they are calculated from measurements

Derived Quantities

Calculated quantities

Physical Quantities

<u>Example</u>

- Use a ruler to measure distance [m]
- Use stop watch to measure time [s]
- Speed
- Speed = distance/time [ms⁻¹]

Physical Quantities

<u>Example</u>

- Use a ruler to measure distance [m]
- Use stop watch to measure time [s]
- Acceleration
- Acceleration = speed/time [ms⁻²]

Physical Quantities

- When measuring quantity, we always compare it to a reference standard
- Example: If we say someone is 1.8 m tall, we mean that they are 1.8 times as tall as a metre stick which we define as 1 m long
- Such a standard defines a **unit**

Physical Quantities

<u>Units</u>

- To make precise measurements, we need units of measure that...
 - Do not change
 - Can be duplicated

Physical Quantities

<u>SI Units</u>

Système International (International System)

- Time seconds [s]
 - Atomic Clock
- Length metres [m]
 - Atomic: Wavelength of light emitted by ⁸⁶Kr
- Mass kilograms [kg]
 - Mass of a cylinder of platinum-irradium alloy

Physical Quantities

• <u>Force</u>

Force = mass×acceleration F = ma

- SI Units: Newtons [N]
- 1 Newton = 1 Kg ms⁻²
- Physical quantity or Operational definition?

Physical Quantities

• Work and Energy

Work = Force × distance W = F d

- SI Units: joule [J]
- \cdot 1 joule = 1 N m
- Physical quantity or Operational definition?

Physical Quantities

Prefixes

- Larger & smaller units for the same PQ
- Metric system
 - Always multiples of 10 or 1/10^{th}

Physical Quantities

<u>Prefixes</u>

- Length
- SI unit: metre

1 nanometre	1 nm	10 ⁻⁹ m	Size of a few atoms
1 micrometre	1µm	10 ⁻⁶ m	Size of a cells
1 millimetre	1 mm	10 ⁻³ m	Size of a pen tip
1 centimetre	1 cm	10 ⁻² m	
1 metre	1 m	10 ⁰ m	
1 kilometre	1 km	10 ³ m	Ten min walk

Physical Quantities

<u>Prefixes</u>

- Time
- SI unit: second

1 femtosecond	1 fs	10 ⁻¹⁵ s
1 picosecond	1ps	10 ⁻¹² s
1 nanosecond	1 ns	10 ⁻⁹ s
1 microsecond	1 µs	10 ⁻⁶ s
1 millisecond	1 ms	10 ⁻³ s
1 second	1 s	1 s

Physical Quantities

<u>Prefixes</u>

- Mass
- SI unit: kilogram

1 microgram	1 μg	10 ⁻⁹ kg	Mass of a dust particle
1 milligram	1 mg	10 ⁻⁶ kg	Mass of a grain of salt
1 gram	1 g	10 ⁻³ kg	Mass of a paper clip
1 kilogram	1 kg	1 kg	Mass a of a bag of flour

Unit Conversion

- When calculating *derived quantities* from *fundamental quantities* correct units <u>MUST</u> be used
- Symbols represent physical quantities including units which must be substituted in a consistent manner

Unit Conversion

Example:

- Calculating the volume of a cube from the length of it's sides
- Measure side to be 1 cm
- Volume in cubic metres [m³]

volume = $(length)^3 = (1[cm])^3 = (1[cm] \times 0.01[m cm^{-1}])^3$ = 0.01 m³

Summary

- Numbers
- Physical quantities
- Symbols
- Units

Background Reading

• FLAP Module M 1.2